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Introduction

e Immunotherapy has revolutionized cancer treatment and rejuvenated the field of
tumor immunology. Several types of immunotherapy, including adoptive cell
transfer (ACT) and immune checkpoint inhibitors (ICIs), have obtained durable
clinical responses, but their efficacies vary, and only subsets of cancer patients can
benefit from them.

e Immune infiltrates in the tumor microenvironment ('ME) have been shown to play
a key role in tumor development and will affect the clinical outcomes of cancer
patients.

e Comprehensive profiling of tumor-infiltrating immune cells would shed light on the
mechanisms of cancer—-immune evasion, thus providing opportunities for the
development of novel therapeutic strategies.



Immune Oncology

Cancer therapy

The Nobel Prize in Physiology or Medicine 2018
was awarded jointly to James P. Allison and
Tasuku Honjo "for their discovery of cancer
therapy by inhibition of negative immune
regulation®
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Drs James P._Allison, PhD (UT MDACC, USA) and Tasuku Honjo, MD (Kvoto University, Japan) were the first to
identify an immune checkpoint pathway, the CTI1.A-4 receptor. Their discovery then led to the development of
ipilimumab, an anti-CTLA-4 checkpoint immunotherapy, which was first approved by the FDA in 2011 for melanoma
Currently, there are six FDA-approved checkpoint immunotherapies. Two of them, ipilimumab and nivolumab (an
anti-PD-1 checkpoint immunotherapy) are approved in combination for the treatment ol melanoma, while
pembrolizumab (anti-PD-1) is approved as a first-line option for patients with advanced lung cancer and
atezolizumab (anti-PD-1.1) is approved as a first-line option for patients with advanced bladder cancer who are
ineligible for chemotherapy.



https://www.cancerresearch.org/scientific-advisory-council/james-allison/
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Overall Goal

Specifically, we aim to clarily the predictive role and vali

initial set of immune-related markers. We target stably expressed
innate inflammatory enzymes and their mediators (iNOS, COX-
2/mPGES], and CD7A4/CD44/MIF) along with their associated
downstream  post-translational ~ modifications  (PTM)  as
Nitrotyrosine (NT).

Each of these markers, individually as well as in “signatures” are |

being tested currently for predictive value. 6



Key Questions

e Why do some patients respond while others don’t?
e Can we identily biomarkers that predict response?

e Can we identify markers for immune-related toxicities?

e Can we identily markers to enable patient selections to increase the number of responders?

> Monotherapy?

> Combination therapies —if so, what combo?

o Ultimately, can we identily other pathways that can be targeted!



T HE TUMOR MICROENVIRONMENT
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THE TUMOR MICROENVIRONMENT — Melanoma
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THE TUMOR IMMUNE MICROENVIRONMENT (TIME)

The past decade has seen a revolution in cancer treatments by moving away from drugs that target tumors
broadly and toward the use of immunotherapies that modulate immune responses against tumors.

Retrospective analyses ol patient populations treated with Immune Checkpoint Blockade (ICB) have revealed that
there are classes of TIME that are associated with those tumors more inclined to ICB responsiveness.

Infiltrated-Excluded
(I-E) TIMES -- “cold”
tumors.

TIMES that are broadly
populated with immune cells
but are relatively void of
CTLs in the tumor core.
CTLs localized along the
border of the tumor mass in
the invasive margin or
‘caught’ in fibrotic nests.

I-E TIMESs, compared with
more inflamed TIMEs,
contain CTLs with low
expression of the activation
markers GZMB (GRZB) and
IFNG and poor infiltration
of CTLs into the tumor core.
-melanoma
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Infiltrated-inflamed (I-1) TIMES --
“hot” tumors

High infiltration of CTLs expressing PD-1
and leukocytes and tumor cells expressing
the immune-dampening PD-1 ligand PD-LL

A subclass of I-1 TIMES,
TLS-TIMES, display
histological evidence of tertiary
lymphoid structures (TLSs),
cellular composition is similar to
that in lymph nodes.

TLSs are often correlated with a
positive prognosis. Similarly to
lymph nodes, TL.Ss can contain a
substantial diversity of
lymphocytes, including naive
and activated conventional T
cells, Treg cells, B cells and DCs.
TLSs are generally present at
the invasive tumor margin

and in the stroma, and are
thought to act as sites of
lymphoid recruitment and
Immune activation.

Nature Medicine | VOL, 24| MAY 2018 | 541-550 | WWVV.nature.com/naturenllgdicine



HOW DO WE STUDY TUMOR MICROENVIRONMENT

Multiplexed Imaging
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THE PANELS
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Characteristic molecules
for cell lineages, e.g. cell
surface markers.

Fibrous proteins, e.g. the
most familiar of the
fibrous proteins are
probably the keratins.

Ve

NEER

More than building blocks,
these generally form
complex mixtures of active
proteins that carry out a
function, e.g. help support
and maintain normal
immune function.



COMPUTATIONAL ANALYSIS PIPELINE

Metal based IMC (CyT(

IF)

e Immune composition variability could be measured

e Spatial enrichment analysis may reveal subtypes of
Immune-tumor organization

e Immune composition and tissue architecture could
reveal more information on the same marker’s

functional outcome

>(CD74+ cells could be in both tumor and
immune cells area but MIF+ cells proximity may
change the outcome.

e Tissue organization (mixed versus
compartmentalized) may correlate with immune

response 1o the given treatment.

> Compartmentalized phenotype correlates
with better overall survival.
14



Current Findings
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Interleukin-6 blockade abrogates immunotherapy
toxicity and promotes tumor immunity
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In brief

Hailemichael et al. find that expression of
interleukin-6, a Th17-cell differentiation
cytokine, and neutrophil and chemotactic
markers increase in inflamed tissue of
patients and mice receiving immuno-
therapy. Blockade of IL-6 reduces Th17
and increases Th1 and CD8" T effector
cell density in tumor, mitigates ICB-
induced autoimmunity, and potentiates
antitumor immunity.
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SUMMARY

Immune checkpoint blockade (ICB) therapy frequently induces immune-related adverse events. To elucidate
the underlying immunobiology, we performed a deep immune analysis of intestinal, colitis, and tumor tissue
from ICB-treated patients with parallel studies in preclinical models. Expression of interleukin-6 (IL-6), neutro-
phil, and chemotactic markers was higher in colitis than in normal intestinal tissue; T helper 17 (Th17) cells were
more prevalent in immune-related enterocolitis (irEC) than T helper 1 (Th1). Anti-cytotoxic T-lymphocyte-
associated antigen 4 (anti-CTLA-4) induced stronger Th17 memory in colitis than anti-program death 1 (anti-
PD-1). In murine models, IL-6 blockade associated with improved tumor control and a higher density of
CD4*/CD8* effector T cells, with reduced Th17, macrophages, and myeloid cells. In an experimental autoim-
mune encephalomyelitis (EAE) model with tumors, combined IL-6 blockade and ICB enhanced tumor rejection
while simultaneously mitigating EAE symptoms versus ICB alone. IL-6 blockade with ICB could de-couple auto-
immunity from antitumor immunity.

Highlights

eImmunotherapy increases expression of Thl7 and
Tel? cell differentiation cytokine 11.-6

e Thl7 cells are more prevalent in enterocolitis than
Thl

e]1.-6 blockade reduces Thl7, increases Thl and Tcl
cell density in ICB-treated tumors

eBlockade of 11.-6 decouples 1CB antitumor
immunity and toxicity
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IL.-6-mediated inflammation was observed in immune checkpoint
blockade induced immune-related enterocolitis (irlZC) samples from
patients with cancer

(A) Schematic diagram for sample collection for gene expression
profiling and multiplex IHC analyses.

(B) Volcano plot of irEC compared with normal intestinal tissue.
Significantly upregulated genes with log2 fold change =2 are shown
inside the red lines. 11.-6 log2 fold change (red circle).

(C-E) Box plots visualize estimate of abundance of immune cell
subset populations using expression of characteristic genes.

(C) Th17 cells within irEC compared with normal colon tissue.

(D) Thl7 cells compared with Thl cells in irEC.

(E) Neutrophils compared with CD8" cells in irEXC.

(F and G) Example of multiplex IHC with cell type annotation and
visualizations.

(F) Normal intestinal tissue

(G) irEC tissue samples.

(H) Percentage of total T cells from multiplex IHC in normal
intestinal tissue compared with irEEC tissue samples.

(I) Percentage of Thl7 cells compared with Thl cells in irEC.

(J) Percentage of Th17 or Thl memory cells in irEC induced by anti-
CTLA-4 compared with anti-PD-1 monotherapy.

(K) CTLA-4 expression among Thl7 memory cells in irEEC. Data are
presented as median and IQR (n = 27 unpaired t test).


https://www.sciencedirect.com/topics/medicine-and-dentistry/colon-tissue

Current Cohorts to Establish Signatures

Slide Stage | Stage IV 10 TMA TIL Samples
Antibody Conjugation Fluorescent Metal Fluorescent Metal Fluorescent Metal Fluorescent Metal
# of Core (ROI) 384 301 704 640 77 77 130 45
# of Plex 7 36 7 37 7 36 7 36
Type of file .qptiff .mcd & .txt .qptiff .mcd & .txt .qptiff .mcd & .txt .qptiff .mcd & .txt
10 TMA TIL Grow | TIL Grow @ Tl No
77 Treated Un Grow
45 Treated Un Treated
Stage 11 57 18
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Phenotype Frequencies Across Survival Groups

Phenotype
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Cell Type Proportions in Neighborhoods

Silhouette plots for Stage 111
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Nearest Neighbor Distances Between Cell '1ypes
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Mingling of Communities
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Structured Immune Composition and Organization in Melanoma
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