

Near East University DESAM Research Institute

Advanced Molecular Methods Workshop

PCR technique and novel advances after COVID-19

Dr. Gökçe Akan

Polymerase Chain Reaction- DNA Photocopier

- PCR is an *in vitro* technique for the amplification of a region of DNA which lies between two regions of known sequence (primers).
 - *in vitro* version of DNA Replication
 - Multiple copies of specific DNA sequence
 - DNA photocopying

Types of PCR

- Conventional PCR
- Real-time PCR
- Quantitative real time PCR (Q-RT PCR)
- Reverse Transcriptase PCR (RT-PCR)
- Multiplex PCR
- Nested PCR
- Long-range PCR
- Single-cell PCR
- Fast-cycling PCR
- Methylation-specific PCR (MSP)
- Hot start PCR
- High-fidelity PCR
- In situ PCR

- Variable Number of Tandem Repeats (VNTR) PCR
- Asymmetric PCR
- Repetitive sequence-based PCR
- Overlap extension PCR
- Assemble PCR
- Intersequence-specific PCR(ISSR)
- Ligation-mediated PCR
- Methylation specifin PCR
- Miniprimer PCR
- Solid phase PCR
- Touch down PCR

Conventional PCR

- Conventional PCR is a PCR technique that allows amplification of DNA sequences.
- It is used to detect qualitatively the amplification of the target genes.

Reagents for PCR

What we need in the laboratory:

- 1. DNA template
- 2. Primers
- 3. DNA polymerase
- 4. Buffer
- 5. dNTPS (bases)
- 6. MgCl₂

•The thermal cycler allows heating and cooling of the reaction tubes to control the temperature required at each reaction step.

Steps in PCR

1. Denaturation

- Heat to separate double strands
- This occurs at 95 °C

2. Annealing

• Primer **binds** to template sequence

3. Elongation

- Primer is extended with addition of **dNTPs** with *Taq* polymerase
- the extension of the strand in the 5-3 direction starting at the primers attaching the appropriate nucleotide (A-T, C-G)

Gel Electrophoresis

- Contents of tubes are loaded onto an agarose gel.
- Fragmentation products of differing length are separated

Separation of DNA fragments based on length

- Shorter fragments move farther along the gel
- Longer fragments move slower.

PCR Visualizing Results

The final result of the conventional PCR procedure is a gel with a series of bands:

Bands can be compared against each other, and to known size-standards, to determine the presence or absence of a specific amplification product.

Real Time PCR

- It can be used for both qualitative and quantitative analysis for amplification of the target genes
- Specialized technique that allows a PCR reaction to be visualized "in real time" as the reaction progresses.
- Real-time detection of PCR products is enabled by the inclusion of a fluorescent reporter molecule in each reaction well that yields increased fluorescence with an increasing amount of product DNA.

Which fluorescent dye using in Real-Time PCR

SybrGreen

- DNA binding Dye
- Binds to dsDNA
- More binding \rightarrow More fl.signal
- Unspesific
- Analysis with Melting Curve

TaqMan Probe

- A small segment of oligonucleotide
- Each TaqMan Probe has;
 - A Fluorescent molecule
 - A Quencher
- Binds to ssDNA
- Spesific for sequence
- Analysis with

Amplification Curve

•Quantitative real time PCR (Q-RT PCR)

• Reverse Transcriptase PCR (RT-PCR)

Quantitative real time PCR (Q-RT PCR)

- Q-RT PCR is used to quantitatively measure the amplification of DNA using fluorescent dyes
- the starting material is double-stranded DNA (DNA or cDNA)

Reverse Transcriptase PCR (RT-PCR)

- RT-PCR is often confused with real-time PCR
- A technique commonly used in molecular biology to detect RNA expression
- RT-PCR is used to qualitatively detect gene expression through creation of cDNA transcripts from

One step vs Two step

One Step

Two Step

- More pipetting step
- Time consuming
- Contamination risks
- Reduce errors
- Simple

Conventinal PCR vs Real time PCR

	Conventional PCR	Real time PCR	
Sensitivity	Low	ow High	
Specifity	Low- only size discrimination	High-use spesific probes	
Quantitave results	No- EtBr staining	Yes-spesific flourescence	
Detection method	Agarose gel electrophoresis	Probe-spesific flourescence	
Detection range	Short-range	Wide range	
Reaction time	3-5 hours	1 hour	
Post-PCR step	Agarose gel electrophoresis	No	
Cross-contamination	Yes	No	
	Open system and Multiple steps	Closed system and Single step	

COVID-19 & PCR

COVID-19 & PCR

Fluorescence

0

5

10

PCR-Future

C	C	NI	0	
0		N	C	

COVID: Chinese researchers develop 4minute PCR test

Researchers at Fudan University in Shanghai say they have developed a technology combining the speed of the rapid antigen test with the accuracy of PCR testing.

Feb.2022

S/N	Manufacturer	Viral gene targe		
1	China, CDC	ORF1b, N		
2	India, TruPCR	E, RdRP, N		
3	Thailand, NIH	N		
4	Japan, NIID	SP, Pancorona &		
5	Hong Kong SAR, HKU	ORF1b-nsp14, N		
6	Germany, Charité	RdRP, E, N		
7	France, IIP	RdRP (2 targets)		
8	USA, CDC	N gene (3 target:		

CDC; centre for disease control and prevention, E; envelop university of Hong Kong, IIP; institut pasteur paris, N; nucleoc national institute of health, NIID; national institute of infectious structural protein, ORF; open reading frame, RdRP; RN/ polymerase, SP; spike protein, USA; United States of America.

test approved for COVID-19 is based on everse transcriptase polymerase chain ime RT-PCR). Real-time RT-PCR for nosis is a quantitative test that amplifies enes for RNA virus detection. Numerous CR kits developed by different countries, companies are available (FIND, 2020). A artificially create is a means by v compared bet genomics, uniquare identified. T determine the establish wheth

Problems and Solutions during PCR

Ð

Problems and Solutions during PCR

• Too few cycles

- Short extension time.
- Short annealing time.

No band or faint band

Nonspesific band or primer dimers

- Long extension time.
- Annealing temperature too low.
- Low MgCl₂ concentration.

Smeared bands

- Too much template
- Degraded template
- Contamination

Shank you for

your attention!

