

Microbial genome

Dr. Ferdiye Taner Department of Medical Microbiology and Clinical Microbiology Faculty of Medicine Near East University "If it is a terrifying thought that life is at the mercy of the multiplication of these minute bodies [microbes], it is a consoling hope that Science will not always remain powerless before such enemies"

Louis Pasteur (1822-1885)

Phylogenic tree of life

 Through variation in rDNA sequences we can distinguish organisms to the species level and trace evolutionary relationships

Three separate
"Domains" of life;
Eukaryotes, Bacteria, and
Archaea

 It is now possible to sequence and analyze ribosomal DNAs without culturing the microbes

Microbial genetics

- Microbes are among our planet's most ubiquitous organisms. They are present in every biosphere, including some of the most extreme locations on Earth.
- Microbes, in general, possess genomes much smaller in size compared to plants and animals, which makes them ideal for genetic and physiological studies.
- Microbial genomics is largely the identification and characterization of their genetic compositions.

Classification

Characteristic	Viruses	Bacteria	Fungi	Protozoa and Helminths
Cells	No	Yes	Yes	Yes
Approximate diameter $(\mu m)^1$	0.02-0.2	1–5	3–10 (yeasts)	15-25 (trophozoites)
Nucleic acid	Either DNA or RNA	Both DNA and RNA	Both DNA and RNA	Both DNA and RNA
Type of nucleus	None	Prokaryotic	Eukaryotic	Eukaryotic
Ribosomes	Absent	70S	80S	80S
Mitochondria	Absent	Absent	Present	Present
Nature of outer surface	Protein capsid and lipoprotein envelope	Rigid wall containing peptidoglycan	Rigid wall containing chitin	Flexible membrane
Motility	None	Some	None	Most
Method of replication	Not binary fission	Binary fission	Budding or mitosis ²	Mitosis ³

Virus

Spike protein

Envelope

Lipid envelope

Bacterial cell

 $^1 \text{For comparison, a human red blood cell has a diameter of 7 <math display="inline">\mu\text{m}.$

²Yeasts divide by budding, whereas molds divide by mitosis.

³Helminth cells divide by mitosis, but the organism reproduces itself by complex, sexual life cycles.

Genomic data-Viruses

An offic	cial website of the United States government Here's how you know.			
NIH	National Library of Medicine National Center for Biotechnology Information			Log in
Nucleotid	e Nucleotide Advanced		Search	Help
GenBank 🗸		Send to: 🕶	Change region shown	•
Pseudomonas putida strain C54, complete sequence GenBank: MZ361366.1 FASTA Graphics			Customize view	
<u>Go to:</u> ⊘			Analyze this sequence Run BLAST	
LOCUS DEFINITION	MZ361366 22782 bp DNA linear BCT 06-SEP-2021 Pseudomonas putida strain C54, complete sequence.		Pick Primers Highlight Sequence Features	
VERSION KEYWORDS	MZ361366.1		Find in this Sequence	
SOURCE ORGANISM	Pseudomonas putida <u>Pseudomonas putida</u> Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae: Pseudomonas		Related information	
REFERENCE AUTHORS	ERENCE 1 (bases 1 to 22782) JTHORS Rajabal,V., Taner,F., Sanlidag,T., Suer,K., Guler,E., Sayan,M. and Petrovski,S. ITLE Genetic characterisation of antibiotic resistance transposons Tn6608 and Tn6609 isolated from clinical Pseudomonas strains in Cyprus		Protein	
TITLE			Taxonomy	
			PubMed (Weighted)	
JOURNAL PUBMED	J Glob Antimicrob Resist (2021) In press 34363995			

Microbial Gene Expression

•Gene expression analysis - the study of the way genes are transcribed to synthesize functional gene products

•Provides insights into normal cellular processes

 Transcription- the process of creating a complementary RNA copy of a DNA sequence, can be regulated in a variety of ways

•DNA microarrays — an array of oligonucleotide probes bound to a chip surface enables gene expression profiling of many genes in response to a condition.

•REAL TIME PCR— steady-state levels of mRNA are quantitated by reverse transcription of the RNA to cDNA followed by quantitative PCR (qPCR) on the cDNA

Identification of an Open Reading Frame

Structure of a gene and primers

Operons and Transcriptional Regulation in Bacteria

mRNA

mRNA

What if we want to study gene function?

Approach to take:

- Transposon Mutagenesis
- Assess if there is phenotypic change
- Locate transposon Tn insertion in genome, using primers specific to Tn
- Clone Tn-gDNA junction fragment and sequence Growth a
- Identify gene similarity in database (NCBI)

Growth at permissive T + kanamycin e Growth at restrictive T + kanamycin

Cloning of entire gene

Blue/White screening-

Detection of recombinant bacteria in vector-based molecular cloning experiments

Restriction enzymes

Cloning of gene into expression vector for protein purification

