Applications of CRISPR/Cas9 based genomewide screening in mammalian cell cultures

Buket Baddal, PhD

Senior Lecturer in Microbiology Department of Pharmaceutical Microbiology Faculty of Pharmacy, Near East University

May 9, 2019

Outline

- CRISPR-Cas9 targeting system
- Genome-wide CRISPR-Cas9 library screening

• Applications in mammalian cell cultures

 Applications in microbiology & microbial pathogenesis

CRISPR-Cas9 targeting system

- CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a microbial nuclease system
- CRISPR contains two components: a nonspecific CRISPR-associated endonuclease (Cas9) and a "guide" RNA (gRNA) capable of programming the specificity of the CRISPR-mediated nucleic acid cleavage

Creating a Loss-of-Function Mutation using CRISPR/Cas9

Genome-wide CRISPR/Cas9 screening

Genome-wide CRISPR/Cas9 screening

- Genome-wide scale screens involve lentiviral delivery of a pooled genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 19,050 genes in human cells
- The goal of a CRISPR screen is to use Cas9 and a pool of gRNAs to identify genes essential for a given phenotype

Genome-wide CRISPR/Cas9 screening

Positive screen

Applications of CRISPR library screening:

- Cellular signaling
- Drug discovery
- Bacterial/viral host target discovery
- Microbial toxin receptor discovery

Discovery/investigation of cellular signalling networks using CRISPR/Cas9 screens

 A pooled screening approach provides an opportunity to interrogate thousands of genetic perturbations in a single experiment

Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation

Wanjing Shang^{a,b,c,1}, Yong Jiang^{a,b,c,1}, Michael Boettcher^{d,1}, Kang Ding^{a,c,e}, Marianne Mollenauer^{f,g}, Zhongyi Liu^{a,b,c}, Xiaofeng Wen^h, Chang Liu^a, Piliang Hao^a, Suwen Zhao^{a,e}, Michael T. McManus^d, Lai Wei^{h,2}, Arthur Weiss^{f,g,2}, and Haopeng Wang^{a,2}

^aSchool of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; ^bInstitute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; ^cUniversity of Chinese Academy of Sciences, 100049 Beijing, China;
^dW. M. Keck Center for Noncoding RNAs, Diabetes Center, Department of Microbiology and Immunology, University of California, San Francisco, CA 94143;
^eiHuman Institute, ShanghaiTech University, 201210 Shanghai, China; ^fDivision of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143; ^gHoward Hughes Medical Institute, University of California, San Francisco, CA 94143; and ^hState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China

- T cells play an essential role in maintaining human health against cancer, infection, and autoimmune diseases
- mechanisms controlling T cell activation are only partially known
- important for T cell-based immune cancer therapies
- a genome-wide CRISPR screen to search for genes that regulate T cell activation

Discovery of new cancer drug targets using CRISPR/Cas9 screens

- Biochemical approaches rely on physical binding of the compound to its protein target
- RNAi-based screens are noisy due to off-target effects of siRNAs

Host-Pathogen Interactions

A CRISPR screen for novel host targets for HIV infection

Potential drug targets for anti-HIV therapy

- This screen was performed in CD4 + T-cells and was designed to find candidate genes required for successful HIV infection, but whose inactivation did not affect cell viability.
- Two known (*CCR5* and *CD4*) and three novel (*ALCAM, SLC35B2* and *TPST2*) cellular factors were discovered, which upon abrogation, prevented HIV infection.
- These new genes are involved in sulfation and cell aggregation pathways and represent candidate targets for interventional HIV therapy.

RESEARCH ARTICLE

CRISPR Screen Reveals that EHEC's T3SS and Shiga Toxin Rely on Shared Host Factors for Infection

Alline R. Pacheco,^{a,b} Jacob E. Lazarus,^{a,b,c} Brandon Sit,^{a,b} Stefanie Schmieder,^{d,e,f} Wayne I. Lencer,^{d,e,f} Carlos J. Blondel,^{a,b*} John G. Doench,^g Brigid M. Davis,^{a,b} Matthew K. Waldor^{a,b,g,h}

^aDivision of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA ^bDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA ^cDivision of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA ^dDivision of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts, USA ^eDepartment of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA ^fDepartment of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts, USA ^gBroad Institute of MIT and Harvard, Cambridge, Massachusetts, USA ^hHoward Hughes Medical Institute, Boston, Massachusetts, USA

Design of a CRISPR/Cas9 screen to identify host factors underlying susceptibility to enterohemorrhagic Escherichia coli (EHEC) infection

Alline R. Pacheco et al. mBio 2018

Alline R. Pacheco et al. mBio 2018

ARTICLE

doi:10.1038/nature19799

Frizzled proteins are colonic epithelial receptors for *C. difficile* toxin B

Liang Tao^{1,2}, Jie Zhang^{1,2}*, Paul Meraner³*, Alessio Tovaglieri⁴, Xiaoqian Wu⁵, Ralf Gerhard⁶, Xinjun Zhang^{7,8}, William B. Stallcup⁹, Ji Miao^{4,10}, Xi He^{7,8}, Julian G. Hurdle⁵, David T. Breault^{4,10,11}, Abraham L. Brass^{3,12} & Min Dong^{1,2}

Clostridium difficile toxin B (TcdB) is a critical virulence factor that causes diseases associated with *C. difficile* infection. Here we carried out CRISPR-Cas9-mediated genome-wide screens and identified the members of the Wnt receptor frizzled family (FZDs) as TcdB receptors. TcdB binds to the conserved Wnt-binding site known as the cysteine-rich domain (CRD), with the highest affinity towards FZD1, 2 and 7. TcdB competes with Wnt for binding to FZDs, and its binding blocks Wnt signalling. FZD1/2/7 triple-knockout cells are highly resistant to TcdB, and recombinant FZD2-CRD prevented TcdB binding to the colonic epithelium. Colonic organoids cultured from FZD7-knockout mice, combined with knockdown of FZD1 and 2, showed increased resistance to TcdB. The colonic epithelium in FZD7-knockout mice was less susceptible to TcdB-induced tissue damage *in vivo*. These findings establish FZDs as physiologically relevant receptors for TcdB in the colonic epithelium.

FZDs are functional receptors for TcdB

Streptolysin O (SLO)

- secreted toxin of Group A Streptococcus
- member of cholesterol-dependent cytolysins
- binds to cholesterol-containing membranes, oligomerizes and inserts into the lipid bilayer to form large pores
- domain 4 contains cholesterol recognition motif and a putative carbohydrate-binding site
- mutation of SLO cholesterol recognition motif or chemical depletion of host cell cholesterol does not diminish SLO membrane binding

Domain 4

Domain 3

Tweten et al. 2015

Domain 2

Glycan microarray analysis reveals SLO has glycan-binding activity

SLO binding partners:

Code	Name	Formula	Structure	К _р (М)
N/A	Lactose	Galβ1-4Glc	○ – ○	2.92 x 10 ⁻⁸ (±8.72 x 10 ⁻⁹)
1A	Lacto-N-Biose I	Galβ1-3GlcNAc	○ - □	n.i.*
18	N-Acetyllactosamine	Galβ1-4GlcNAc	○- - □	1.73 x 10 ⁻⁷ (±9.1 x 10 ⁻⁹)
1E	β1-3galactosyl-N- acetylgalactosamine	Galβ1-3GalNAc	○- □	1.73 × 10 ⁻⁷ (±8.70 x 10 ⁻¹⁰)
1G	Lacto-N-tetraose	Galβ1-3GlcNAcβ1-3Galβ1- 4Glc	○----•	1.31 x 10 ⁻⁸ (±5.50 x 10 ⁻¹⁰)
1H	Lacto-N-neotetraose	Galβ1-4GlcNAcβ1-3Galβ1- 4Glc	○-⊡-○-●	6.44 x 10 ⁻¹⁰ (±1.82 x 10- ¹⁰)
10	Linear B-2 Trisaccharide	Galα1-3Galβ1-4GlcNAc	○-○-	n. i.*
2C	Terminal disaccharide of globotetraose	GalNAcβ1-3Gal		n. i.*

Symbol nomenclature

GalNAc

*n.i. = No interaction (K_D observed was greater than 1 x 10⁻³ M and/or the chi-square value was greater than 50% of the R_{max})

Inhibition assay for rSLO host surface binding

Preincubation with oligosaccharide LNnT prevents SLO binding to human oropharyngeal keratinocytes, blocks pore formation and increases cell viability

CRISPR/Cas9 knockout screening strategy

GeCKO v2.0 two vector system

CPPT psi+ RRE SpCas9 FLAG P2A Blast WPRE EFS lentiCas9-Blast 120 20161201_SLO_MTT CPPT psi+ RRE sgRNA EF1a U6 Puro WPRE 100 lentiGuide-Puro Cell Viability (%) 80 GeCKO v2 human library 60 Species human 40 Number of genes targeted 19,050 6 per gene 20 -5637_SLO Targeting constructs per gene (3 in Library A, 3 in Library B) - A549 SLO -HeLa_SLO 0 Number of miRNA targeted 1,864 0.1 1E-4 1E-3 0.01 10 100 1000 4 per miRNA Targeting constructs per miRNA SLO Concentration (nM) 1,000 Control (non-targeting) sgRNAs 122,411 (65,383 in Library A, Total sgRNA constructs

58,028 in Library B)

Sensitivity: A549 ≈ 5637 > HeLa

A549-LibA

Bar: 100 μm Arrow head: "normal cell"

A549

8 nM SLO

1.6 nM SLO

SLO screen

PCR for sgRNA amplicon enrichment

All sgRNA sequences have universal 3' and 5' flanking sequence

Conclusions

- CRISPR/Cas9 genome-wide library screening is advantageous over existing techniques
- More precise (less off-targets), easy to use
- Applicable to multiple areas of research (drug discovery, signalling, pathogenesis, immunology)
- Allows identification of bacterial toxins, viral receptors
- Allows discovery of novel drug targets for new therapeutic drug design

Acknowledgements

- Wessels Lab
 - Michael Wessels MD
 - Jorge Velarde MD PhD
 - Maghnus O'Seaghdha PhD
 - Meredith Benson PhD
 - Nicola Lynskey PhD
- Dong Lab
 - Min Dong PhD
 - Songhai Tian PhD
- Bioinformatics
 - Joann Arce PhD
 - George Fagogenis PhD

National Institutes of Health

